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This paper gives the following resuit. Let V', and V, be Chebyshev subspaces of
C[|—1, 1] with dimensions 1 and n (n > 1), respectively. Let V', <V, and v;€ V;
(/=1,2). Then there exists an f€ C[—1,1] such that v; is a best L,
approximation to f from V, (j=1,2) if and only if v =v, — v, changes sign at
least once in [—1, 1] or is equal to zero.

1. INTRODUCTION

In a conference held at Oberwolfach in 1968, Rivlin [1]| proposed the
following problem (= [—1, 1]):

Characterize those n-tuples of algebraic polynomials {p,, p,sss Py}
with degrees satisfying

degp;=j (j=0,1,..,n-1),

for which there exists an /' € C(X) such that the polynomial of best uniform
approximation of degree j to fis p; (j =0, 1,..., n — 1). What is the answer in
the particular case n =27

Several authors have studied this problem (see the references in [2]). In
[6] the author has considered the same problem in C(X) with the L, norm

171=] 170 dx

and has given the answer in the particular case when n = 2: There exists an
S € C(X) such that p; (j=0,1) is a best approximation to f if and only if
the polynomial p = p, — p, changes sign once. In this paper we generalize
this result to the case of two prescribed best approximations v;€ V;
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(/j=1,2), where ¥, and V, are Chebyshev subspaces of C(X) with
dimensions 1 and n (n > 1), respectively.

THEOREM. Let V, and V, be Chebyshev subspaces of C(X) with
dimensions 1 and n (n > 1), respectively. Let V. V, and v;E V, (j=1,2).
Then there exists an f € C(X) such that v; is a best approximation to f from
V; (j=1,2) if and only if the function v = v, — v, changes sign at least once
in X or is indentically equal to zero.

Before proving the theorem we introduce some notation. For g € C(X)
write

Z.(g)={x€ X: g(x)> 0},
Z_(g)={x€ X: g(x) <0},
Z(g)={x€X: g(x)=0}.

m(E) = the Lebesgue measure of the set E.

2. PROOF OF THE THEOREM

We can suppose without loss of generality that v, = 0.

Necessity. Assume that there exists an f € C(X) such that v; is a best
approximation to f from V; (j = 1, 2), where v, = 0, but the condition of the
theorem is not satisfied, i.e., v (=v,) #0 and does not change sign in X, say
v>0o0nX.

Letting u € V', and u > 0, by Theorem 4-2 in {3] we have

IJXusgnfdx gfzmudx,
U usgn(f—v)dx | u dx,
X Z{(f—v)
i.e.
Lm)udx—Lvmudx gfzmudx,

J udx—j udx gj u dx.
zZ.0-v) zZ_(f-v) Z(¢F-v)
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Hence

LN)udx—Limudx—szudxgo,

f udx—-J udx+j udx>0.
Z,(—v) zZ_(f-v) zZ(F-v)

On the other hand, since

Z (NVZSNcZ (f—v)VUZ@)

and
Z(f=0)VZ(f—v)=Z, ()Y Z(),
J udx+f udx<f udx
Z_H VA¢)] Z_(f—v)
and
j udx+f udx<J. u dx.
Zi(f-v) zZ(f-v) zZ.H
Whence

J' udx+j udx—J udx
Z . (f-v) Z(f—-v) zZ_(f-v)

<j udx—jmudx—j u dx.
zZ.n z Z_ N

From (1), (2), and (4) it follows that

mev) udx + LU_U) udx _Jz,(f,v) u dx
:fumudx—)(zmudx—Limudx:O,
So
JZW—») udx +Jz(f—v) udx =Jz,(f_v) udx=c.
Thus

f udx+f udxzj udx.
Z ., (f—v) Z(f—1v) Z.
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From (3) and (6) we obtain
| u dx =0,
Z NNZ(F-VZ(F-0))
which implies
m(Z ,(fINZ (S —v)VZ(f —0v))=0.
Since the set
ZANZ (=) VZ(f—o)=Z (f/INZ_(f~v)
={x € X: 0 < f(x) < v(x)}
is open, {x € X:0 < f(x) < v(x)} = @. This gives that
Z¥v)=Z_(f—v)N(Z (S —v)UZ([—))
=Z_(f—v\Z_(f—v)
< Z(v).

But v has at most n — 1 zeros in X, because v € V,, where V, is an n-
dimensional Chebyshev subspace. Thus there exists a u* € V, such that |5,
p. 30|

u*(x) < O’ x € (Z+(f_ U)UZ(f_ U))\Z*(l)),
>0, x€Z_(f—v)

and max, ., [#*(x) < min, , u(x), for which by (5) we have

J (u+u*)sgn(f —v)dx

> (u -+ u*)sgn(f —v)dx — | |u*|dx

-

Z_(f-v

udx—f

Z,(f-v)

udx—j u*sgn(f—v)dx—f |u*|dx
D ¢ X

= udx+f u*dx
Z{f-v)

a contradiction.



SIMULTANEOUS BEST L, APPROXIMATIONS 289

Sufficiency. Assume now that v changes sign at least once in X, because

the theorem is obviously valid for v = 0.
First we show the theorem for v having one change of sign. Let v change

sign at x* € (—1, 1).
By Lemma 2 in |4] there exist points

—l =Xy <X, <o KXy <Xy =XF X, < KXy < Xgpyp=1

such that
S( 1)j udc=0, Vuevy,, )
=
Zntl o Xign
Ny Tude=0,  Vuev,. (8)
i=n+1 Cx;

Write N = [n/2), N' = [(n — 1)/2] and denote

N

G, = U [%305 X214 15

(;
n
G,= U [%254 15 X254 )5
i=N"+ 1
N
El = . [x2i+1!x2i+2]ﬂ
i=0
n

E,= U (X205 X2: 1)

i=N+1
G=G,JUG,,
E=E,UE,,

2n+1
H=( U t—hx+h)nE
femt

where 0 < h < $min, _;c2,(X;, , — x;). With this notation (7) and (8) become

J udx = J u dx, Yuev, 9)
G, E,

and
[ udx=Jﬂ u dx, YuecV,. (10)
‘G, E;
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Now put
S ) =v(x), x€G,
= 09 X e E\H,

= a continuous curve, the points
in which almost everywhere
strictly lie between 0 and v, XE[x;—hx;+h|NE
(i=leonn+2.,2n+1)

Take x < x* such that v(x)# 0 and let s =sgnv(x). Whence we have
almost everywhere

sgn f(x)= s, x€ G U(E, NH),
=—5, xe G, U(E,NH),

=0, XE E\H,
sgn(f(x) —v(x))=—s5, Xx€EE,,

= 5, xek,,

=0, x€G.

Thus since by (9) and (10) for any u € V,

U usgn(f—v)dx

j udx—J' u dx

E, E,

J udx—-f udx

G, Gy

<j61|u|dx+j61|u|dx

=JG|u|dx=LUAU)|u|dx,

v is a best approximation to f from V,.
On the other hand, for any u € V,

j usgn fdx
X

= sJGIudx—sjczudx+JHusgnfdx

= sJEludx —studx+JHusgnfdx

= sJEl\Hudx—stz\Hudx—F 2fHusgnfdx

<L]\H|u|dx+JEZ\H|u| dsz\Hlu|dx=Lm|u|dx
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provided # > 0 is small enough (in fact independent of u of V), because u
does not change sign and m(E;) >0 (j=1,2). This means O is a best
approximation to f from V.

Therefore f is the needed function and meanwhile satisfies

SED =01, f()=o().

Generally, let v change sign at points x*, [=1,2,...k (k <n), =1 <x§ <
xF < - <xff < 1. Take k + 1 points yg, ¥, ..., ¥ such that

—l =y, <XF <y, <xF <y, <K xF <y =1

In each subinterval {y,_;, y,}, =1, 2,.., k, v changes sign exactly once, so
according to the result above there exists an f;, € C[y,_,, y;] such that v; is a
best approximation to f from V; (j=1,2)in [y,_,, y,] and

Svi_o=v(y_y),  fy)=v(y), =12,k

where v =v, —v,. Hence

Sx) = filx), XE |y 0l I=1,2,...k

belongs to C(X) and has v; as a best approximation from V; (j = 1, 2). This
completes the proof of the theorem.

REFERENCES

1. T. J. RivLIN, New and Unsolved Problems, No. 1: Best algebraic approximation, in
“Abstract Spaces and Approximation,” Vol. 10, p. 421, Birkhaiiser Verlag, Basel/Stuttgart,
1969.

2. M. R. SUBRAHMANYA, On simultaneous best approximations in C'[a,b], J. Approx.
Theory 26 (1979), 101-107.

3. J. R. Rice, “The Approximation of Functions,” Vol. 1, Addison—Wesley, Reading,
Mass./Palo Alto/London, p. 104, 1964,

4. C. A. MiccHELLL Best L' approximation by weak Chebyshev systems and the uniqueness
of interpolating perfect splines, J. Approx. Theory 19 (1977), 1-14.

5. S. KARLIN AND W. J. STUDDDEN, “Tchebycheff Systems: With Applications in Analysis
and Statistics,” Interscience, New York, 1966.

6. Y. G. SH1, On a problem of Rivlin in L, approximation, J. Approx. Theory 37 (1983),
103-107.

Printed in Belgium



